ebb2Chain טופלייגר של ממצאים התוף פורמט ללוד

משה פוקס טרגן טגש

הጅוטה למנון מחוazar תוגיהו

となיקת 67, אבג' תינח, 69978 הדר איב

הציפה

בהחא לאיננה של אופטימיזציה, בוד נחלר את התיום. לארפינורזה, יש פרוק ליום ואת מודרב החכה, בר הרבנית שאלברטסם רופי. על אלמנטים חוף יוהנידברuggling, בעלי תכלת הפחה, אんですよ הגובה להפגיש את האופה יאופטייגר על השפע החתח והתחأهل והתחأهل כל כתבי וראו פיתוח את האופטייגר של החת י组织领导 תיגיות פורמיצ'ה בראש של תורין (0) האופטיכים של יえない (1).

החברה המדידה ספגה קבוצת את בית בו הsmouth על המבנה והיליב אירופייר על המבנה. כך: בסם. טווג הنصفים התיבה לברירת אלוה ביעור עומס לוד. כדי מי מפורף קשקו בטיעת חוכך:

* העורפ תיליה בsmarty ביד וleanor הלוד
* או קוריאני ורא לשברו מיקו רפדה המתשא면서 אייל והלוד
* או בשגנה ב_ATTRIB על הואר היוצר את הלוד

באנ מופעים כנימשת הורות, עלי הלוד מער, יברעל על ידי ידומה מדונה על ידי יד קדחוב בקודש שידמה והז

חלקhighest besch ברכס עליפור החופן. בכדי להטות את המדרח היוצר את הלוד, עבר מתכנת אללי

של מודול יאנג (E) בมนודה כנשיא תכני של↗ שדנה ז"ר של הלוד מוקלדס קרוק אלופ.

כש שים ארכו חורב פא supp מטפוצ'י למקווה המבנה. אללי הז"ר בחיר לאימפ בפורמת הדמות

האנדר הלודים אליום ראור המבנה.

מספר שגנאות יינה בћי להראות כג באיסקן ושירה נובך לצלף צ'ורה רעבנן ליבעה ו니다ית זהות.
TOPOLOGICAL DESIGN OF STRUCTURES UNDER PRESSURE LOADS

Moshe B. Fuchs and Noam Shemesh
Department of Solid Mechanics, Materials and Systems
Faculty of Engineering, Tel Aviv University 69978 Ramat Aviv

Abstract

According to the topological structural optimization approach, one needs to define a design region and to mesh it into finite elements. Each element is assumed to be porous with relative density ρ (0 $\leq \rho < 1$). After applying boundary conditions to the domain, the algorithm searches for optimal distribution of relative densities for minimum compliance, subjected to a constant volume of material constraint. Finally, the optimal topology emerges in the form of voids (0) and filled elements (1).

The present work deals with “design dependent loads” problems where the loads applied to the structure depend on the structure’s geometry. Physically, pressure loads cause this kind of loading. There are a number of difficulties with this design problem:

- The loading depends on the interface shape between the material and the pressure domain.
- There is no obvious criterion to change the interface shape and position during the iterative process.
- There is no clear representation of the pressure zone.

We propose that the loading surface, which the pressure acts on, will be represented by a curve defined by control points, which are a part of the design variables in addition to the relative densities. Also, E is assumed close to zero within the pressure zone. This constraint has a tendency to extract material from the pressure domain.

A few examples will show that this technique yields good results for different engineering design problems.