
The 2008 Questions of the Month 
 

 

May 2008 (first Question of the Month ever) 

 

Question: 

 

Who coined the name "Finite Element Method" and when? 

 

Answer: 

 

The terms "finite element" and "finite element method" are thought to have been  

coined around 1956 by Raymond W. Clough, a professor at the University of  

California at Berkeley. The first publication to actually use the term "finite  

element" was Clough's paper "The Finite Element Method in Plane Stress  

Analysis," which was presented at the Proceedings of the 2nd annual ASCE  

Conference on Electronic Computation in 1960. However, Clough apparently used  

this term in his lectures already since 1956. (By the way, the question on  

coining the term FEM and the question on the invention of FEM are two different  

questions! The latter will be reserved for a future Question of the Month...) 

 

ANSWERED CORRECTLY: Elad Priel, Rami Ben-Zvi, Shmuel Vigdergauz, Slava 

Krylov, Yoav Ophir, Ran Ganel, Alex Yakhot, Nicolae Gluck, Amiel Herszage. 

 

 

June 2008  

 

Question: 

 

The acronym CFL: What does it mean in the context of CM (just one or two lines  

please), who discovered or invented it and when? 

 

Answer: 

 

The "CFL Condition" is a condition needed on the maximum value of the ratio of  

time step to spatial cell/element size (Delta t / Delta x) to guarantee the  

numerical stability of the given scheme. The acronym CFL stands for Courant,  

Friedrichs and Lewy, three well-known applied mathematicians who discovered  

this stability condition in their celebrated paper in 1928. 

 

By the way, the famous applied mathematician Peter Lax (who is still very  

active today) has been heard to "protest" that the "young generation" thought  

that CFL stood for Courant-Friedrichs-Lax. 

 

ANSWERED CORRECTLY: Anne Weill, Michel Becovier, Matania Ben-Artzi, 

Amiel Herszage, Rami Ben-Zvi, Yoav Ophir, Ido Gur. 

 



July 2008  

 

Question:  

 

This time it's a special challenge. In the context of CM, everybody knows that  

a problem in 3D is almost always more difficult to solve than its counterpart  

in 2D. Give an example for a problem which, in a certain respect, is more  

complicated to solve in 2D than in 3D, and explain why. 

 

Answer: 

 

I received 3 different (and correct) answers from 4 readers. I outline  

all the answers below. 

 

A. [Answered: Eli Turkel, Slava Krylov; and this solution is what I had in mind  

when I asked the question.] Wave Propagation. In a sense, 2D wave propagation  

is more complicated than 3D wave propagation. This manifests itself in the  

computation of wave propagation problems. In 3D, a wave pulse emanating from a  

source will propagate and leave the region where it started without leaving any  

trace. On the other hand, in 2D a wave will leave endless ripples after it.  

Consider, for example, a stone thrown into a still lake. It will create waves  

on the surface of the water (which are 2D waves), and if you watch these waves  

carefully you will see many small ripples that continue to be present long  

after the head front left this local region. Mathematically, this has to do  

with the more complicated behavior of the Green's function of the wave operator  

in 2D compared to 3D. This 2D behavior has implications in various wave-related  

numerical schemes; Absorbing Boundary Conditions is one such type of schemes. 

 

B. [Answered: Matania Ben-Artzi.] Potential Problems in Unbounded Domains. This  

answer is somewhat related to the previous one. The fundamental solution of the  

Laplacian blows up (like log r) in 2D, and decays in 3D. Hence, any potential  

problem, where behavior at infinity should be taken into account, poses  

specific problems in 2-D, which manifest themselves in numerical schemes.  

Example: Potential (i.e., irrotational) flow in an exterior domain. 

 

C. [Answered: Amiel Herszage.] Elastic Shells. Problems of thin elastic shells  

may be regarded as 2D in the sense that once certain assumptions are introduced  

on the shell behavior, and through-the-thickness integration is performed, the  

problem is completely characterized by the solution on the mid-surface of the  

shell. The 3D counterpart would be a problem in a very thick "shell" of the  

same shape. Computationally, the treatment of the 3D problem is more  

straight-forward. With the Finite Element method, one can solve the 3D  

elasticity equations using 3D "brick elements" (also called "solid elements" in  

some commercial codes) which are quite robust. The thin-shell problem requires  

shell elements which are always "special"; in fact there is no consensus on a  

single shell element which is best in all cases, and one has to be very careful  

in evaluating the numerical results, especially when large deformation is  

involved. 



August 2008 

 

Question: 

 

Another grand challenge! 

 

We all know that a numerical process should better converge. If a numerical  

process does not converge, then we usually think of it as useless.  

Nevertheless, give an example for a numerical process which does not converge  

if we proceed with it further and further, but it is nevertheless useful.  

Practically, we stop somewhere within the process and we get a "good result". 

 

Answer: 

 

Only four people sent me answers this time. In fact, it is reassuring to know  

that there is general agreement that non-converging methods are by and large  

not useful... (Someone told me half jokingly that this time my question was not  

"educational". I guess he is right.) Having said this, here are the four  

correct answers: 

 

METHODS BASED ON ASYMPTOTIC EXPANSIONS. [This was suggested in 

general terms by Orna Agmon Ben-Yehuda and for a specific application - field 

theory in physics - by Asher Yahalom.] Certain numerical methods are based on a so-

called asymptotic expansion. Such an expansion arises if the problem may be 

associated with a small parameter (epsilon), and is written (in theory) as an infinite  

series. Sometimes this series converges, but in the more interesting cases  

(called singular perturbation problems) the series does not converge. If we  

base a numerical method on such a non-converging asymptotic series, the method  

would not converge if we take ever more terms in the series! However, what  

saves the day is the fact that in practice the approximate solution initially  

approaches the exact solution as we take more and more terms, and only from a  

certain term, hopefully very remote, the solution starts to "run away" from the  

exact solution. The Khokhma is, of course, to stop the process before this  

happens, and the book of Bender and Orszag gives a nice stopping criterion for  

this. 

 

DOMINATION OF ROUND-OFF ERRORS. [This was suggested by Rachel Gordon 

in the context of iterative solvers. It also occurs in the case of direct solvers.]  

Imagine solving a linear problem using finite elements or finite differences,  

and obtaining a linear system of algebraic equations, and then solving it by  

Gauss Elimination. If you refine the mesh more and more the system (the matrix)  

will become larger, and you will get a more accurate solution. However, people  

are not always aware that this is true only up to a certain level of  

refinement! Interestingly, as we refine the mesh the discretization error  

decreases, but the round-off error (generated by the fact that the computer can  

carry a finite number of digits) increases! In other words, the matrix becomes  

more and more ill-conditioned. When the round-off error dominates, one cannot  

converge to the exact solution by simply reducing the discretization error  

further. In most cases one does not reach the level of refinement where  

round-off errors start to dominate. But if the problem is "stiff" (if you don't  



know what this is, never mind) this can happen in practice. The same is true  

for iterative solvers. [Rachel Gordon gave GMRES as a point in case.] Still, if  

we stop early enough we may get a useful numerical solution. 

 

INVERSE PROBLEMS. [Rachel Gordon suggested this, pointing into the specific  

application of tomography.] Inverse problems are notoriously ill-posed, and  

thus are very sensitive to all sorts of "noise". Therefore their numerical  

solution is often extremely difficult. Typically, a numerical process for  

solving an inverse problem will produce an approximate solution that would  

approach the exact solution, e.g., by taking a finer and finer discretization,  

but only until the level of noise inherent in the problem is reached. From that  

moment on the solution cannot "converge" any more. One way to look at this is  

algebraic. A super-sensitive problem leads to a super sensitive matrix, and  

such a matrix would give rise to large round-off errors, which brings us back  

to the previous answer. 

 

NUMERICAL PROCESSES THAT SIMULATE NON-CONVERGING MODELS. 

[Slava Krylov suggested this.] Some mathematical models that are supposed to 

represent real behavior of certain physical, social and economical systems, are 

inherently "non-converging". [Slava Krylov gave Cellular Automata and Logistic 

Maps as examples.] Of course, a numerical simulation of such a model would also be  

"non-converging" in the same sense. 

 

 

September 2008 

 

Question: 

 

This time we consider the mathematical model which is being solved via the  

numerical method. We are all aware of the fact that if we do not pick the  

appropriate model relevant to the physical problem at hand, we would not get a  

good solution no matter how excellent our numerical technique is. 

 

First, please watch the fascinating movie at  

http://www.youtube.com/watch?v=3mclp9QmCGs showing the famous failure of the  

Tacoma bridge in 1940. 

 

Now the question. Years later, when computers and NASTRAN (the finite element  

code) were available, someone tried to simulate the dynamic response of the  

bridge and obtain the failure numerically. This someone modeled the geometry of  

the bridge quite precisely, and applied the wind as a given load in a certain  

fixed direction on the bridge, taking into account the wind conditions that  

were measured on the day of this storm. This simulation did _not_ predict the  

failure of the bridge. Why not? What was wrong in the model? (Later the model  

was improved, and then it did predict the failure.) 

 

Answer: 

 

This was apparently a tough one. Only one reader, Amiel Herszage, sent me a  

correct answer. 



 

It is tempting at first to think that the failure was caused by simple  

resonance. Namely, the wind load spectrum included load acting in one of the  

eigenfrequencies of the bridge (a torsional mode, as we can see in the movie,  

and indeed the bridge design was weak in torsion), which caused resonance. In  

theory and without damping, resonance leads to unbounded deformation and  

stresses, so it seems like a reasonable cause for failure. This simple  

mechanism was rejected, the main reason being that the damping that the bridge  

system was estimated to have would have prevented failure from resonance unless  

the wind load was extremely high, which was not the case on the day of the  

failure. 

 

The true reason for the failure was aeroelastic flutter (PIRPUR in Hebrew),  

which is an effect of loss of stability known well in aeronautical engineering.  

To get a flutter effect, one must take into account the interaction between the  

structure and the fluid (wind) flow around the structure. There is a coupled  

mechanism: the wind flow affects the load on the bridge; this load causes the  

bridge to deform; the deformation of the bridge changes the flow of the wind  

around the bridge, the wind flow affects the load on the bridge..., and so on  

in an endless circle. More specifically flutter is caused by the lag of the  

aerodynamic forces after the "the dynamics of the bridge", in a way which  

effectively introduced "negative damping", which in turn causes instability. 

 

So in short, the answer to the question is that the person trying to simulate  

the failure using FE analysis, should have considered a coupled model of the  

bridge and the fluid flow around it. With a model of the bridge alone  

(representing the wind as a given load) one cannot get the failure that really  

occurred. 

 

 

October 2008 

 

Question: 

 

You have in your working environment an incompressible flow code (it doesn't  

matter what method it is based on), which is used routinely for problems in  

hydrodynamics. The code is truly incompressible, namely assumes given constant  

density and does not include any temperature effects. One day, you suspect that  

a certain industrial process that you are working on involves Rayleigh-Benard  

instability, in which temperature plays a crucial role. Rather than buying a  

new code, you decide to change the existing code in order to be able to  

simulate the Rayleigh-Benard convection. What is the easiest way to do this,  

namely the way which would require minimal changes in the existing code? 

 

Answer: 

 

The first thought that one might have is that one has to turn the code into a  

compressible code. After all, Rayleigh-Benard instability is caused by buoyancy  

effects, namely hot fluid becomes less dense and thus tends to go up (against  

gravity) while cold fluid becomes more dense and thus tends to go down. Thus,  



density becomes variable and the fluid is not incompressible any more. 

 

However, turning an incompressible code into a fully compressible code is a  

nightmare... First of all, the velocity and pressure on one hand and the  

temperature on the other become fully coupled (through the equation of state  

that connects the energy equation to the momentum equations), and one has to  

solve for the temperature field simultaneously with the other variables. This  

involves some major technical changes in the code. Second, the properties of  

numerical schemes (stability and accuracy) for compressible and incompressible  

flows are totally different, and thus the "switch" from incompressible to  

compressible requires a lot of caution and is far from being "automatic". 

 

What may save the day is the so-called Boussinesq approximation, which is valid  

in many applications (for example, it is heavily used in crystal growth  

applications). It is based on approximating the change in the density due to  

the temperature by the first-order term in a Taylor series around the nominal  

density. In this case the equations to be solved are not modified at all,  

except for a "buoyancy forcing term" in the right-hand-side of the relevant  

momentum equation which is a linear function of the temperature. This has the  

advantage that the density remain a given constant in the governing equations.  

Moreover, there is no full coupling between the temperature and the other  

variables. Thus, we can first solve for the temperature distribution (maybe  

using a separate, thermal code), and then solve separately for the velocity and  

pressure fields using our slightly modified incompressible code. 

 

Correct answers were obtained from (in alphabetical order): 

--------------- 

 

Simon Brandon, Alex Gelfgat, Amiel Herszage, Stephane Seror, David Sidilkover,  

Alex Yakhot. 

 

 

November 2008 

 

Question: 

 

Which of the following three expressions is a well-defined term in the jargon  

of High-Performance Computing (HPC) and what does it mean? The expressions are: 

 

(1) Amazingly parallel 

(2) Hugely parallel 

(3) Embarrassingly parallel 

 

Answer: 

 

The only term of the three that has become a standard term in the jargon of  

High Performance Computing (HPC) is "embarrassingly parallel", that describes  

an algorithm which can be implemented in a completely parallel way. In the  

words of Michel Bercovier, "This designates parallel numerical algorithms that  

have little or no data exchanges and shared memory requirements, and a very  



loose synchronisatin requirement. They can thus be run not only on clusters but  

on Grids in a very effective way. Usually they are also easy to implement. The  

best example is given by Monte Carlo methods for the solution of stochastic  

ODEs or PDEs." 

 

Correct answers to this questions were given by (in alphabetical order):  

--------------- 

 

Orna Agmon Ben-Yehuda, Michel Bercovier, Simon Brandon, Mahmood Jabareen,  

Stephane Seror, Jonathan Tal, Shaul Tayeb, Anne Weill. 

 

 

December 2008 

 

Question: 

 

Here is a real story. A smart engineer called Tamar (Shem Baduy) had a code  

that solved numerically a class of problems governed by PDEs. This was a finite  

element code, but in fact the question is quite general and applies to many  

other types of discretization methods. The code involved evaluation of some  

integrals which was done numerically. One day Tamar realized that these  

integrals can be calculated analytically, so she replaced the routine in the  

code that performed the numerical integration by a routine that contained the  

analytic formulas for the integrals. She checked the code by running it for a  

few benchmark problems, and to her surprise she saw that the errors increased  

rather than decreased! She checked for a bug, but didn't find any. How can this  

be explained? 

 

Answer: 

 

First, here is the general answer that I had in mind and that I think relates  

to the real story of Tamar. Any code based on discretization (finite elements,  

finite differences, finite volumes, spectral...) generates discretization  

errors in the solution. If the code involves some numerical integration in it,  

then _in addition_ to the discretization error it also generates integration  

error. Now, who says that the two errors add up together and don't partly  

cancel each other? In other words, who says that the discretization error and  

integration error have the same sign? (The only law that says this in Murphy's  

law...) So it may certainly happen that the integration error will cancel part  

of the discretization error. In this case, the integration error actually  

"helps", and when we replace the numerical integration by exact analytical  

integration we would see that the total error increased! 

 

Three readers (PT, RBZ and ZZ) gave a very good extreme example for this  

situation. In some pathological situations, such as thin beams, plates and  

shells when using a naive variational formulation and a naive approximation  

space, the finite element solution exhibits what is called "locking". In this  

case the discretization error becomes enormous. One remedy for this situation  

is a technique called selective-reduced integration. Without going into  

details, selective-reduced integration amounts to deliberately increasing the  



integration error so that it cancels most of the locking error. So in this case  

both the discretization error and integration error are very large, but they  

almost cancel each other and thus the total error is small. If, god forbid, we  

replace the selective-reduced integration by an exact analytical integration  

the locking phenomenon will render the solution useless. 

 

There is another possible correct answer. Since the statement of the question  

did not say that the analytic integration that Tamar used was _exact_, one  

might think that the analytic integration was itself approximate (say,  

asymptotic). In this case it might happen that the error involved in the  

analytic approximation is larger than that of the numerical integration. 

 

Correct answers were received from the following (in alphabetical order): Rami  

Ben-Zvi, Amiel Herszage, Pavel Trapper, Asher Yahalom, Zvi Zaphir. 


